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An aerodynamic problem on an air flow around a large aspect ratio rectangular wing is investigated in this 

study. According to the theory of Vlasov, the wing is considered to be a thin rod. External loads are assumed to be 

proportional to the airfoil angle of attack related to the dimensionless coefficient of the lift and the pitching moment 

coefficient. These coefficients depend on the airfoil parameters and the Mach number M and are determined by 

experimental measurements for subsonic and supersonic velocities. In this case, to define the unstable cases of the 

wing, one bases on the Lyapunov stability theory. Equations of bending and torsional free vibrations have resulted. 

Based on the analysis of natural frequencies (eigenfrequencies), it is possible to determine the changing positions 

of the real part and the imaginary part of the characteristic equation solution. These positions can cause instabilities 

for the wing such as torsional divergence and flutter. 
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1. Introduction 

 
 Aeroelasticity studies the effect of aerodynamic forces on elastic bodies [1, 2, 3]. The classical theory 

of aeroelasticity deals with the stress and deformation of an elastic body under the action of external forces, 

usually the oncoming air flow, and their magnitude is determined by the deformations of the body. Due to a 

given configuration of an elastic body, the aerodynamic forces rapidly increase while the flow velocity grows. 

So, there may exist a critical flow velocity at which the structure becomes unstable [4, 5]. Such instability can 

cause excessive deformation and can lead to structural failure [6]. Therefore, the determination of the critical 

velocity is important for such branches of technology as the construction of structures, hydrofoils, and 

especially aviation technology [7, 8]. For these cases, the structures of the fuselage, the shells of the combustion 

chambers of rocket engines, and the wings are elastic bodies interacting with the air flow.  

 The determination of the critical velocity has been investigated since the 30s of the last century and is 

still widely studied in many countries over the world such as in the USA, Russia, and some countries of the 

EU. There has been a lot of works related to this problem [9, 10, 11, 12, 13, 14]. The challenging issue is to 

construct and solve a system of equations of state for the flow and the related factors. In [15, 16], the so-called 

piston model of supersonic flow is proposed, and the considered object is a thin plate of variable thickness. In 

[17], the wing is represented by a rod of constant cross-section, and external loads are also determined by the 

piston theory.  

 In this paper, the Lyapunov stability theory is used to define the unstable cases of the wing according 

to the Mach number M. By combining Vlasov’s theory, a new model is obtained. Based on the acquired model, 

we can analyze the natural frequencies of the solution of the characteristic equation to study the instability of 

the wing. The current study focuses on: 

 Developing a new mathematical model for the bending and torsional free vibrations. 

 Using Laplace transformation to solve the above model. 
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 Defining unstable cases of the wing depending on the Mach number M based on analyzing the 

eigenfrequencies of the above solution. 

 Many modern unmanned aircrafts have deployable wings with a sufficiently high aspect ratio 

(approximately 5 or higher) [18]. They have an asymmetrical profile with a small relative thickness. In this 

article, we propose to use the equations of the theory of rods to determine the aerodynamic loads and to 

model the behavior of wings such as the dependency of the real and imaginary parts of the solution of the 

characteristic equation on the Mach number M and compare it to the experimental results obtained in [19]. 

Since these graphs are applied for both subsonic and supersonic velocities, the capabilities of the model can 

be expanded. 

 

2. Thin rod theory 

 
 In the theory of rods of Vlasov, to formulate the problem, one needs to take into account the warping 

of sections [20, 21, 22]. There are the following hypotheses: 

 (1) A flat section that is perpendicular to the rod axis with the initial state not deformed in its plane. In 

other words, it retains the transverse dimensions and shape of the contour, the contour plane remains 

perpendicular to the deformed axis of the rod, and the section plane undergoes warping. 

 (2) In the above case, the system of displacements includes transverse displacements corresponding to 

the translational motion of the section plane as a rigid body and its rotation around the direction vector of the 

axis, and the longitudinal displacements are determined by rotations of the section as a rigid body around the 

main central axes of inertia of the cross-section. 

 These hypotheses lead to the following expressions for the displacements of points of the rod:  
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 (2.1) 

 

 where      , , , , ,u z t v z t w z t  are components of the displacement vector of the center of mass of the 

section;    , , ,y zz t z t   are rotation angles around the y  and x  axes;  ,z t  is an angle of twisting; r  is the 

distance from a point of the section to its center of mass;  ,d z t  is a measure of warping. The warping function 

is adopted by Vlasov in the form of a product xy . The consequences are obtained from the kinematic hypothesis 

of Vlasov and the hypothesis of Bernoulli. The difference is that the warping measure  ,d z t  is unknown. 

 Because we only take into account the inertia of translational motion and rotation around the tangent 

to the axis, the mathematical model is formulated based on components of the displacement vector 

     , , , , ,u z t v z t w z t  and the angle of twist  ,z t . The system of differential equations has the following 

form: 
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 (2.2) 

 

where A is the cross-sectional area; ,x yJ J  are the principal central moments of inertia of the section; 

, ,x y zq q q  are components of the load that is distributed along the corresponding axes,  ,zm z t  is the torsion 

torque distributed along the z axis; E  is Young's modulus, G  is shear modulus,   is the density of air. We 

can eliminate the warping measure  ,d z t  in the system of Eq.(2.2) by using Eq.(2.3): 
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Equation (2.3) is the equilibrium condition for the torques, i.e., the projections of the principal moment onto 

the axis of the rod. 

 

3. Unstable cases of the wing 

 
3.1. The proposed load model 

 

 In aerodynamics [19], the lifting force Y  and the pitching moment zM  can be expressed in terms of 

the dimensionless coefficients of the lift yC  and the pitching moment zM . By the linear theory [23, 24], they 

can be represented by linear functions of the angle of attack of the airfoil  : 
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where ,y zC M 
 are the derivatives of the lift coefficient and the pitching moment of the wing profile by  ; 

V  is the velocity of the undisturbed airflow; Ab  is the mean aerodynamic chord of wing; S  is the wing console 

area. 
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 The derivatives of the coefficients ,y zC M 
 mainly depend on the Mach number M  and the shape of 

the wings in the plane. The shape of the wings is characterized for trapezoidal wings by the aspect ratio  , the 

narrowing  , the relative thickness ,c  and the sweep angle  . In this way, 

 

     f , , , , , f , , , , .y 1 z 2C M c M M c          (3.2) 

 

 Note that for the wing rod model, the lift is the shear load that is applied to the center of mass of the 

airfoil, and the pitching moment is the torque distributed along the length. 

 The wings of unmanned aircraft are characterized by symmetrical profiles. Therefore, from the 

complete system of equations of the rod state (2.2), we use two equations of the fourth-order to simulate 

bending across the symmetric and torsional planes: 
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where S Lb  is the wing console area, L – the console length, b – the side chord.  

 To transform torsional vibrations (3.4) to a dimensionless form, we introduce a dimensionless 

longitudinal coordinate 
z

L
   and divide the left and right sides of Eq. (3.4) by the product EJ : 
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We have: 
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where sV  is the velocity of sound in the wing material, v  is  Poisson's ratio. Then, the torsion equation in a 

dimensionless form can be presented as follows: 
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 Let the initial setup of the wing angle 0  . We consider the equation of free torsional vibrations in 

the case of harmonic vibrations: 
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where Ω  is the dimensionless frequency of free vibrations. 

In this case, the equation of free torsional vibrations (3.6) will have the following form: 
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3.2. Solution of the proposed load model 

 

 Now, we group similar terms and obtain:  
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and denote 
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The equation of free vibrations is an ordinary linear equation of the fourth-order with constant coefficients  
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We can transform Eq. (3.10) to a system of the first-order equations as bellow: 
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Now, we introduce a state vector [25]: 
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The dimensionless equation for the amplitudes   takes the form: 
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 This ordinary differential equation is solved analytically by the method of initial parameters [25]: 
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where ( )0   is the value of the state vector at 0   (vector of initial parameters), the normalized matrix of 

fundamental solutions  V ,   is defined as the original of the matrix defined by the Laplace transform of 

Eq.(3.12) in the coordinate   [25]: 
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 Since  , ,D p a b  is a biquadratic polynomial, its solutions are easily determined and the original of 

the matrix of fundamental solutions is found analytically: 
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 Satisfying the boundary conditions at 0  , we set two initial parameters а0 = 0, and а0 = 0, and for 

the existence of a nontrivial solution, we set the main determinant of the homogeneous system of equations 

for the boundary conditions at the end of the console to zero: 
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 The main determinant is also expressed analytically: 
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 The transcendental equation  ,D M 0   is solved with respect to Ω , for example, by the method 

of half division for different ,  , M a b . The value of M , at which  Ωk М 0 , k=1,2,3…, is the critical 

dimensionless flow velocity around a straight wing, or divergence velocity. 

To represent the solution of problem (3.12), we use an expansion of the forms of free vibrations (modal 

expansion): 
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where Ωk  are the frequencies of free torsional vibrations. 

 

3.3. Analysis of wing stability 

 

 Let us show the possibility of a loss of wing stability by analyzing the solutions of the characteristic 

equation with respect to p : 
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 We must solve the problem of free vibrations of a steel wing of rectangular section, i.e., Eq.(3.15) with 
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The pitching moment coefficient can be defined based on the following function: 
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 Figures 1 and 2 showed the dependences of the real and imaginary parts of the solution of equation 

(3.17) on the Mach number M at  = 1, i.e., we set the frequency of free vibrations equal to 1. 
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Fig.1. Dependence of the real part of the solutions of the characteristic equation on the Mach number M of the 

incident flow. 

 

 
 

Fig.2. Dependence of the imaginary part of the solutions of the characteristic equation on the Mach number M 

of the incident flow. 

 

4. Conclusions 
 

 In this article, we have presented a method to consider instability of the wing. While all the solutions 

of the characteristic equation (20) are real, free Lyapunov stable torsional vibrations will happen. At a given 

value of the Mach number M, a purely imaginary solution appears, one of the forms of critical velocity begins 

to develop aperiodically (with M = 1.125), stable vibrations in shape occur around this form, corresponding to 

another pair of solutions (see the graphs of the first and second solutions). The second critical velocity (with 

.M 2 58 ) corresponds to the appearance of two pairs of complex solutions, and the second and fourth 

solutions correspond to developing harmonic vibrations. The smaller solution corresponds to the torsional 
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divergence, and the larger one corresponds to the torsional flutter. The divergence interval is 

.   . ,1 125 M 2 58   flutter interval whereas the   .2 58 M  . 

 Thus, it is shown that at an arbitrarily assigned frequency of free vibrations there are several values of 

the Mach number M at which aperiodic components appear in the expansion in terms of the forms of free 

vibrations, therefore, the loss of stability is described by the proposed model. 
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Nomenclature 

 
 A – cross-sectional area 

 b – side chord 

 Ab  – average aerodynamic chord of wing 

 yC  – lift coefficient 

 yC  – derivatives of the lift coefficient of the wing profile by   

 c  – relative thickness  

 E  – Young's modulus 

 G  – shear modulus 

 i – imaginary unit 

 ,x yJ J  – principal central moments of inertia of the section 

 L – console length 

 M  – Mach number 

  zM  – pitching moment  

 zM   – derivatives of the pitching moment of the wing profile by   

  ,zm z t  – torsion torque distributed along the z axis 

 , ,x y zq q q  – components of the load that is distributed along the corresponding axes 

 r  – distance from a point of the section to its center of mass;  ,d z t  is a measure of warping 

 S  – wing console area 

      , , , , ,u z t v z t w z t  – components of the displacement vector of the center of mass of the section 

 V  – velocity of the undisturbed airflow 

 sV  – velocity of sound in the wing material 

 Y  – lifting force  

   – airfoil  

   – narrowing  

    , , ,y zz t z t   – rotation angles around the y  and x  axes 

   – aspect ratio  

  ,z t  – angle of twisting 

   – density of air 

   – sweep angle  
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    – Poisson's ratio 

 Ω  – dimensionless frequency of free vibrations 
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